12 06 2023
准确率(Accuracy):分类器正确分类的样本数占总样本数的比例。 Accuracy = (True Positives + True Negatives) / Total Samples 精准率(Precision):在被分类为正类的样本中,真正为正类的样本数占总体被分类为正类的样本数的比例。 Precision = True Positives / (True Positives + False Positives) 召回率(Recall):在实际为正类的样本中,被正确分类为正类的样本数占总体实际为正类的样本数的比例。 Recall = True Positives / (True Positives + False Negatives) F1值:精准率和召回率的调和平均值,综合了两者的评价指标。 F1 Score = 2 * (Precision * Recall) / (Precision + Recall)
延伸阅读
    人工智能在战争中的应用举出实例
    滋补品行业的市场分析 swto 优势劣势威胁与机遇 分析
    checkpoint中Harmony和horizon的缺点
    为什么月亮没有光?
    如何使用CASE语句进行条件判断和结果返回?