12 06 2023
准确率(Accuracy):分类器正确分类的样本数占总样本数的比例。 Accuracy = (True Positives + True Negatives) / Total Samples 精准率(Precision):在被分类为正类的样本中,真正为正类的样本数占总体被分类为正类的样本数的比例。 Precision = True Positives / (True Positives + False Positives) 召回率(Recall):在实际为正类的样本中,被正确分类为正类的样本数占总体实际为正类的样本数的比例。 Recall = True Positives / (True Positives + False Negatives) F1值:精准率和召回率的调和平均值,综合了两者的评价指标。 F1 Score = 2 * (Precision * Recall) / (Precision + Recall)
延伸阅读
    请阐述淘宝客如何在社群里的盈利技巧
    童袜来啦,别说我懒 不营业了[加油][加油]看中的小主,款式随意搭
    人的唾液对食物有什么作用?
    资源稀缺与可持续发展
    如何发现自己的激情所在?