2025年02月25日 星期二  宁波金宣网络科技有限公司!

第三方账号登陆:

logo,宁波金宣网络科技有限公司

求曲面e^z- z + xy =3在点(2,1,0)处的切平面及法线方程

发表于:2023-06-14 7497次阅读 来源:金宣助手

AI创作问答(高级版)

求曲面 e^z - z + xy = 3 在点 (2,1,0) 处的切平面及法线方程。 首先,我们需要计算曲面在给定点的切平面。曲面的切平面垂直于曲面在该点处的法线向量。 为了计算法线向量,我们需要求出曲面函数的偏导数,并将给定点的坐标代入。 首先,对于曲面方程 e^z - z + xy = 3,对 z 进行求导得到: ∂/∂z (e^z - z + xy) = e^z - 1 接下来,对于曲面方程 e^z - z + xy = 3,对 x 和 y 分别进行求导得到: ∂/∂x (e^z - z + xy) = y ∂/∂y (e^z - z + xy) = x 对于给定的点 (2,1,0),将其代入偏导数的表达式中,得到: ∂/∂z (e^0 - 0 + 2*1) = 1 ∂/∂x (e^0 - 0 + 2*1) = 1 ∂/∂y (e^0 - 0 + 2*1) = 2 因此,在点 (2,1,0) 处的法线向量为 (1, 1, 2)。 接下来,我们可以利用法线向量和点 (2,1,0) 来构造切平面方程。切平面方程可以表示为 Ax + By + Cz + D = 0,其中 (A, B, C) 为法线向量,(x, y, z) 为曲面上的任意一点,D为常数。 代入法线向量和给定点的坐标,得到切平面方程: 1*(x - 2) + 1*(y - 1) + 2*(z - 0) + D = 0 化简得到: x + y + 2z + D - 4 = 0 因此,在点 (2,1,0) 处的切平面方程为 x + y + 2z - 4 = 0。 综上所述,曲面 e^z - z + xy = 3 在点 (2,1,0) 处的切平面方程为 x + y + 2z - 4 = 0,法线向量为 (1, 1, 2)。

AI智能问答网 免责声明:
本内容由ChatGPT3.0生成,可能存在逻辑不清、乱码等问题,点这里>>使用AI高级版(GPT4.0),更聪明、更完整、无乱码!
以上内容除特别注明外均来源于网友提问、ChatGPT回答,权益归原著者所有,本站仅作效果演示和欣赏之用;

【顶部】 【打印】 【关闭】

国内版ChatGPT 金宣小助手

国内版ChatGPT官网微信公众号

浙ICP备15010989号-1 网站地图

浙公网安备 33022602000630号

Copyright © 2015-2025 宁波金宣网络科技有限公司 All Right Reserved.